Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.718
Filtrar
1.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38586033

RESUMO

Monounsaturated fatty acids (MUFAs) play a pivotal role in maintaining endoplasmic reticulum (ER) homeostasis, an emerging hallmark of cancer. However, the role of polyunsaturated fatty acid (PUFAs) desaturation in persistent ER stress driven by oncogenic abnormalities remains elusive. Fatty Acid Desaturase 1 (FADS1) is a rate-limiting enzyme controlling the bioproduction of long-chain PUFAs. Our previous research has demonstrated the significant role of FADS1 in cancer survival, especially in kidney cancers. We explored the underlying mechanism in this study. We found that pharmacological inhibition or knockdown of the expression of FADS1 effectively inhibits renal cancer cell proliferation and induces cell cycle arrest. The stable knockdown of FADS1 also significantly inhibits tumor formation in vivo. Mechanistically, we show that while FADS1 inhibition induces ER stress, its expression is also augmented by ER-stress inducers. Notably, FADS1-inhibition sensitized cellular response to ER stress inducers, providing evidence of FADS1's role in modulating the ER stress response in cancer cells. We show that, while FADS1 inhibition-induced ER stress leads to activation of ATF3, ATF3-knockdown rescues the FADS1 inhibition-induced ER stress and cell growth suppression. In addition, FADS1 inhibition results in the impaired biosynthesis of nucleotides and decreases the level of UPD-N-Acetylglucosamine, a critical mediator of the unfolded protein response. Our findings suggest that PUFA desaturation is crucial for rescuing cancer cells from persistent ER stress, supporting FADS1 as a new therapeutic target.

2.
Sci Total Environ ; 927: 172338, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608897

RESUMO

Algal blooms in lakes have been a challenging environmental issue globally under the dual influence of human activity and climate change. Considerable progress has been made in the study of phytoplankton dynamics in lakes; The long-term in situ evolution of dominant bloom-forming cyanobacteria in meso-eutrophic plateau lakes, however, lacks systematic research. Here, the monthly parameters from 12 sampling sites during the period of 1997-2022 were utilized to investigate the underlying mechanisms driving the superiority of bloom-forming cyanobacteria in Erhai, a representative meso-eutrophic plateau lake. The findings indicate that global warming will intensify the risk of cynaobacteria blooms, prolong Microcystis blooms in autumn to winter or even into the following year, and increase the superiority of filamentous Planktothrix and Cylindrospermum in summer and autumn. High RUETN (1.52 Biomass/TN, 0.95-3.04 times higher than other species) under N limitation (TN < 0.5 mg/L, TN/TP < 22.6) in the meso-eutrophic Lake Erhai facilitates the superiority of Dolichospermum. High RUETP (43.8 Biomass/TP, 2.1-10.2 times higher than others) in TP of 0.03-0.05 mg/L promotes the superiority of Planktothrix and Cylindrospermum. We provided a novel insight into the formation of Planktothrix and Cylindrospermum superiority in meso-eutrophic plateau lake with low TP (0.005-0.07 mg/L), which is mainly influenced by warming, high RUETP and their vertical migration characteristics. Therefore, we posit that although the obvious improvement of lake water quality is not directly proportional to the control efficacy of cyanobacterial blooms, the evolutionary shift in cyanobacteria population structure from Microcystis, which thrives under high nitrogen and phosphorus conditions, to filamentous cyanobacteria adapted to low nitrogen and phosphorus levels may serve as a significant indicator of water quality amelioration. Therefore, we suggest that the risk of filamentous cyanobacteria blooms in the meso-eutrophic plateau lake should be given attention, particularly in light of improving water quality and global warming, to ensure drinking water safety.

3.
BMC Complement Med Ther ; 24(1): 158, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610025

RESUMO

BACKGROUND: A triplet chemotherapy regimen of docetaxel, cisplatin, and 5-fluorouracil (TPF) is used to treat head and neck squamous cell carcinoma; however, it is toxic to bone marrow mesenchymal stem cells (BMSCs). We previously demonstrated that Ganoderma spore lipid (GSL) protect BMSCs against cyclophosphamide toxicity. In this study, we investigated the protective effects of GSL against TPF-induced BMSCs and hematopoietic damage. METHODS: BMSCs and C57BL/6 mice were divided into control, TPF, co-treatment (simultaneously treated with GSL and TPF for 2 days), and pre-treatment (treated with GSL for 7 days before 2 days of TPF treatment) groups. In vitro, morphology, phenotype, proliferation, senescence, apoptosis, reactive oxygen species (ROS), and differentiation of BMSCs were evaluated. In vivo, peripheral platelets (PLTs) and white blood cells (WBCs) from mouse venous blood were quantified. Bone marrow cells were isolated for hematopoietic colony-forming examination. RESULTS: In vitro, GSL significantly alleviated TPF-induced damage to BMSCs compared with the TPF group, recovering their morphology, phenotype, proliferation, and differentiation capacity (p < 0.05). Annexin V/PI and senescence-associated ß-galactosidase staining showed that GSL inhibited apoptosis and delayed senescence in TPF-treated BMSCs (p < 0.05). GSL downregulated the expression of caspase-3 and reduced ROS formation (p < 0.05). In vivo, GSL restored the number of peripheral PLTs and WBCs and protected the colony-forming capacity of bone marrow cells (p < 0.05). CONCLUSIONS: GSL efficiently protected BMSCs from damage caused by TPF and recovered hematopoiesis.


Assuntos
Antineoplásicos , Ganoderma , Células-Tronco Mesenquimais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Docetaxel , Cisplatino , Espécies Reativas de Oxigênio , Esporos Fúngicos , Hematopoese , Fluoruracila , Lipídeos
4.
Nat Commun ; 15(1): 3218, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622151

RESUMO

Flash Joule heating (FJH) is an emerging and profitable technology for converting inexhaustible biomass into flash graphene (FG). However, it is challenging to produce biomass FG continuously due to the lack of an integrated device. Furthermore, the high-carbon footprint induced by both excessive energy allocation for massive pyrolytic volatiles release and carbon black utilization in alternating current-FJH (AC-FJH) reaction exacerbates this challenge. Here, we create an integrated automatic system with energy requirement-oriented allocation to achieve continuous biomass FG production with a much lower carbon footprint. The programmable logic controller flexibly coordinated the FJH modular components to realize the turnover of biomass FG production. Furthermore, we propose pyrolysis-FJH nexus to achieve biomass FG production. Initially, we utilize pyrolysis to release biomass pyrolytic volatiles, and subsequently carry out the FJH reaction to focus on optimizing the FG structure. Importantly, biochar with appropriate resistance is self-sufficient to initiate the FJH reaction. Accordingly, the medium-temperature biochar-based FG production without carbon black utilization exhibited low carbon emission (1.9 g CO2-eq g-1 graphene), equivalent to a reduction of up to ~86.1% compared to biomass-based FG production. Undoubtedly, this integrated automatic system assisted by pyrolysis-FJH nexus can facilitate biomass FG into a broad spectrum of applications.


Assuntos
Carbono , Carvão Vegetal , Grafite , Biomassa , Fuligem
5.
RSC Adv ; 14(17): 11862-11871, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623293

RESUMO

Since Na3V2(PO4)3 (NVP) possesses modest volume deformation and three-dimensional ion diffusion channels, it is a potential sodium-ion battery cathode material that has been extensively researched. Nonetheless, NVP still endures the consequences of poor electronic conductivity and low voltage platforms, which need to be further improved. On this basis, a high voltage platform Na3V2(PO4)2F3 was introduced to form a composite with NVP to increase the energy density. In this study, the sol-gel technique was successfully used to synthesize a Na3V2(PO4)2.75F0.75/C (NVPF·3NVP/C) composite cathode material. The citric acid-derived carbon layer was utilized to construct three-dimensional conducting networks to effectively promote ion and electron diffusion. Furthermore, the composites' synergistic effect accelerates the quick ionic migration and improves the kinetic reaction. In particular, NVP as the dominant phase enhanced the structural stability and significantly increased the capacitive contribution. Therefore, at 0.1C, the discharge capacity of the modified NVPF·3NVP/C composite is 120.7 mA h g-1, which is greater than the theoretical discharge capacity of pure NVP (118 mA h g-1). It discharged 110.9 mA h g-1 of reversible capacity even at an elevated multiplicity of 10C, and after 200 cycles, it retained 64.1% of its capacity. Thus, the effort produced an optimized NVPF·3NVP/C composite cathode material that may be used in the sodium ion cathode.

6.
Environ Pollut ; 349: 123913, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582189

RESUMO

Cigarette smoke (CS), the main source of indoor air pollution and the primary risk factor for respiratory diseases, contains chemicals that can perturb microbiota through antibiotic effects. Although smoking induces a disturbance of microbiota in the lower respiratory tract, whether and how it contributes to initiation or promotion of emphysema are not well clarified. Here, we demonstrated an aberrant microbiome in lung tissue of patients with smoking-related COPD. We found that Stenotrophomonas maltophilia (S. maltophilia) was expanded in lung tissue of patients with smoking-related COPD. We revealed that S. maltophilia drives PANoptosis in alveolar epithelial cells and represses formation of alveolar organoids through IRF1 (interferon regulatory factor 1). Mechanistically, IRF1 accelerated transcription of ZBP1 (Z-DNA Binding Protein 1) in S. maltophilia-infected alveolar epithelial cells. Elevated ZBP1 served as a component of the PANoptosome, which triggered PANoptosis in these cells. By using of alveolar organoids infected by S. maltophilia, we found that targeting of IRF1 mitigated S. maltophilia-induced injury of these organoids. Moreover, the expansion of S. maltophilia and the expression of IRF1 negatively correlated with the progression of emphysema. Thus, the present study provides insights into the mechanism of lung dysbiosis in smoking-related COPD, and presents a potential target for mitigation of COPD progression.

7.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612457

RESUMO

The advancement of exosome studies has positioned engineered exosomes as crucial biomaterials for the development of advanced drug delivery systems. This study focuses on developing a hybrid exosome system by fusing mesenchymal stem cells (MSCs) exosomes with folate-targeted liposomes. The aim was to improve the drug loading capacity and target modification of exosome nanocarriers for delivering the first-line chemotherapy drug paclitaxel (PTX) and its effectiveness was assessed through cellular uptake studies to evaluate its ability to deliver drugs to tumor cells in vitro. Additionally, in vivo experiments were conducted using a CT26 tumor-bearing mouse model to assess the therapeutic efficacy of hybrid exosomes loaded with PTX (ELP). Cellular uptake studies demonstrated that ELP exhibited superior drug delivery capabilities to tumor cells in vitro. Moreover, in vivo experiments revealed that ELP significantly suppressed tumor growth in the CT26 tumor-bearing mouse model. Notably, for the first time, we examined the tumor microenvironment following intratumoral administration of ELP. We observed that ELP treatment activated CD4+ and CD8+ T cells, reduced the expression of M2 type tumor-associated macrophages (TAMs), polarized TAMs towards the M1 type, and decreased regulatory T cells (Tregs). Our research highlights the considerable therapeutic efficacy of ELP and its promising potential for future application in cancer therapy. The development of hybrid exosomes presents an innovative approach to enhance drug delivery and modulate the tumor microenvironment, offering exciting prospects for effective cancer treatment strategies.


Assuntos
Exossomos , Neoplasias , Animais , Camundongos , Linfócitos T CD8-Positivos , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis , Modelos Animais de Doenças , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias/tratamento farmacológico
8.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612838

RESUMO

Petal blotch is a specific flower color pattern commonly found in angiosperm families. In particular, Rosa persica is characterized by dark red blotches at the base of yellow petals. Modern rose cultivars with blotches inherited the blotch trait from R. persica. Therefore, understanding the mechanism for blotch formation is crucial for breeding rose cultivars with various color patterns. In this study, the metabolites and genes responsible for the blotch formation in R. persica were identified for the first time through metabolomic and transcriptomic analyses using LC-MS/MS and RNA-seq. A total of 157 flavonoids were identified, with 7 anthocyanins as the major flavonoids, namely, cyanidin 3-O-(6″-O-malonyl) glucoside 5-O-glucoside, cyanidin-3-O-glucoside, cyanidin 3-O-galactoside, cyanidin O-rutinoside-O-malonylglucoside, pelargonidin 3-O-glucoside, pelargonidin 3,5-O-diglucoside, and peonidin O-rutinoside-O-malonylglucoside, contributing to pigmentation and color darkening in the blotch parts of R. persica, whereas carotenoids predominantly influenced the color formation of non-blotch parts. Zeaxanthin and antheraxanthin mainly contributed to the yellow color formation of petals at the semi-open and full bloom stages. The expression levels of two 4-coumarate: CoA ligase genes (Rbe014123 and Rbe028518), the dihydroflavonol 4-reductase gene (Rbe013916), the anthocyanidin synthase gene (Rbe016466), and UDP-flavonoid glucosyltransferase gene (Rbe026328) indicated that they might be the key structural genes affecting the formation and color of petal blotch. Correlation analysis combined with weighted gene co-expression network analysis (WGCNA) further characterized 10 transcription factors (TFs). These TFs might participate in the regulation of anthocyanin accumulation in the blotch parts of petals by modulating one or more structural genes. Our results elucidate the compounds and molecular mechanisms underlying petal blotch formation in R. persica and provide valuable candidate genes for the future genetic improvement of rose cultivars with novel flower color patterns.


Assuntos
Antocianinas , Rosa , Humanos , Rosa/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Perfilação da Expressão Gênica , Flavonoides , Glucosídeos
9.
J Chin Med Assoc ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625842

RESUMO

BACKGROUND: Various postoperative staging systems were developed to assess the outcome of differentiated thyroid cancer (DTC) from initial risk after surgery to dynamic changing prognosis during follow-up. The objective of our retrospective cohort study was to identify risk factors contributing to macroscopic positive surgical margin (R2 resection) and parameters in discriminating the treatment responses and prognosis among R2 patients. METHODS: In total, 242 DTC patients with extrathyroidal extension who underwent a thyroidectomy at Kaohsiung Chang Gung Memorial Hospital between January 2013 and July 2018, were included. The patients were grouped according to the presence or absence of gross residual disease (R2). The R2 patients were further classified into two categories according to their treatment response into excellent and non-excellent groups. The parameters and treatment outcomes were compared between these groups. RESULTS: The mean follow-up time was 45.3 months. 207 (85.5%) patients had either surgery-free or microscopic margins (R0/R1), while 35 (14.5%) had R2 resection. In the R2 group (n = 35), 15 (42.9%) patients achieved an excellent response, while 20 (57.1%) achieved a non-excellent response. Statistically significant differences were observed in the extent of neck dissection, TSH-Tg level, post-RAI Tg level, nodal status, and recurrence between the two groups. The Kaplan-Meier curves for 5-year local and distant recurrence-free survival (LRFS and DRFS) of R0/R1 vs. R2 patients were 90.0% vs. 66.3%, and 98.4% vs.90.7% respectively, (p <0.001). Among the R2 patients, the excellent responders had a higher LRFS than non-excellent responders (93.3% vs. 45.1%, p=0.008). CONCLUSION: There are significant disparities in RFS among R2 patients with different treatment responses. The nodal status of PTC and thyroglobulin level after thyroidectomy and RAI were factors contributing to difference in their treatment responses.

10.
Int J Surg ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38626431

RESUMO

BACKGROUND: The prognostic value of carbohydrate antigen 19-9 (CA19-9) is known to be affected by elevated bilirubin levels in patients with gallbladder carcinoma (GBC). The clinical significance of changes in the ratio of CA19-9 levels to total bilirubin (TB) levels in patients with GBC after curative-intent resection remains unknown. The aim of this study was to determine the prognostic value of changes in preoperative and postoperative CA19-9/TB ratio in these patients. METHODS: Prospectively colleced data on consecutive patients who underwent curative-intent resection for GBC between January 2015 and December 2020 stored in a multicenter database from 10 hospitals were analysed in this retrospective cohort study. Based on the adjusted CA19-9 defined as the ratio of CA19-9 to TB, and using 2×103 U/µmol as the upper normal value, patients were divided into a normal group (with normal preoperative and postoperative adjusted CA19-9), a normalization group (with abnormal preoperative but normal postoperative adjusted CA19-9), and a non-normalization group (with abnormal postoperative adjusted CA19-9). The primary outcomes were overall survival (OS) and recurrence-free survival (RFS). The log-rank test was used to compare OS and RFS among the groups. The Cox regression model was used to determine factors independently associated with OS and RFS. RESULTS: The normal group (n=179 patients) and the normalization group (n=73 patients) had better OS and RFS than the non-normalization group (n=65 patients) (the 3-year OS rates 72.0%, 58.4% and 24.2%, respectively; the RFS rates 54.5%, 25.5% and 11.8%, respectively; both P<0.001). There were no significant differences between the normal and the normalization groups in OS and RFS (OS, P=0.255; RFS, P=0.130). Cox regression analysis confirmed that the non-normalization group was independently associated with worse OS and RFS. Subgroup analysis revealed that the non-normalization group of patients who received adjuvant therapy had significantly improved OS and RFS as compared to those who did not receive adjuvant therapy (OS, P=0.025; RFS, P=0.003). CONCLUSIONS: Patients with GBC who underwent curative-intent surgical resection with postoperative abnormal levels of adjusted CA19-9 (the CA19-9/TB ratio) were associated with poorer long-term survival outcomes. Adjuvant therapy after surgery improved the long-term outcomes of these patients.

11.
J Chromatogr A ; 1722: 464899, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38626542

RESUMO

Perfluoroalkyl substances (PFAS) are persistent organic pollutants that pose significant risks to human health and the environment. Efficient and selective enrichment of these compounds was crucial for their accurate detection and quantification in complex matrices. Herein, we report a novel magnetic solid-phase extraction (MSPE) method using fluorine-functionalized magnetic amino-microporous organic network (Fe3O4@MONNH2@F7) adsorbent for the efficient enrichment of PFAS from aqueous samples. The core-shell Fe3O4@MONNH2@F7 nanosphere was synthesized, featuring magnetic Fe3O4 nanoparticles as the core and a porous amino-functionalized MONs coating as the shell, which was further modified by fluorination. The synthesized adsorbent material exhibited high specific surface area, hydrophobicity, and abundant fluorine groups, facilitating efficient and selective adsorption of PFAS via electrostatic attraction, hydrophobic-hydrophobic interactions, fluorine-fluorine interactions, π-CF interactions and hydrogen bonding. Furthermore, the MSPE method coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) allowed for the rapid, sensitive, and accurate determination of ultra-trace PFAS in real water samples, human serum, and human follicular fluid. Under optimal conditions, the established MSPE method demonstrated a linear range (2 to 2000 ng L-1), with a correlation coefficient exceeding 0.9977, low limits of detection ranging from 0.54 to 1.47 ng L-1, with a relative standard deviation (RSD) < 9.1%. Additionally, the method showed excellent performance in complex real samples (recovery ratio of 81.7 to 121.6 %). The adsorption mechanism was investigated through kinetic, isotherm, and molecular simulation studies, revealing that the introduction of fluorine groups enhanced the hydrophobic interaction and fluorine-fluorine attraction between the adsorbent and PFAS. This work provides a proof-of-concept strategy for designing adsorbent materials with high efficiency and selectivity by post-modification, which has great potential for the detection and analysis of PFAS in complex samples.

12.
Polymers (Basel) ; 16(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611212

RESUMO

A strain of Leuconostoc mesenteroides HDE-8 was isolated from homemade longan fermentation broth. The exopolysaccharide (EPS) yield of the strain was 25.1 g/L. The EPS was isolated and purified, and the structure was characterized using various techniques, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, high-performance size exclusion chromatography (HPSEC), and scanning electron microscopy (SEM). The monosaccharide composition of the EPS was glucose, with a molecular weight (Mw) of 1.7 × 106 Da. NMR spectroscopy revealed that the composition of the HDE-8 EPS consisted of D-glucose pyranose linked by α-(1→4) and α-(1→6) bonds. The SEM analysis of the EPS showed an irregular sheet-like structure. Physicochemical analysis demonstrated that EPSs exhibit excellent thermal stability and high viscosity, making them suitable for fermentation in heat-processed and acidic foods. Additionally, milk coagulation tests showed that the presence of EPSs promotes milk coagulation when supplemented with sucrose. It suggests that EPSs have wide-ranging potential applications as food additives, improving the texture and taste of dairy products. This study provides practical guidance for the commercial use of HDE-8 EPSs in the food and related industries.

13.
Pest Manag Sci ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578108

RESUMO

BACKGROUND: Bacterial virulence factors are involved in various biological processes and mediate persistent bacterial infections. Focusing on virulence factors of phytopathogenic bacteria is an attractive strategy and crucial direction in pesticide discovery to prevent invasive and persistent bacterial infection. Hence, discovery and development of novel agrochemicals with high activity, low-risk, and potent anti-virulence is urgently needed to control plant bacterial diseases. RESULTS: A series of novel ß-hydroxy pyridinium cation decorated pterostilbene derivatives were prepared and their antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) were systematacially assessed. Among these pterostilbene derivatives, compound 4S exhibited the best antibacterial activity against Xoo in vitro, with an half maximal effective concentration (EC50) value of 0.28 µg mL-1. A series of biochemical assays including scanning electron microscopy, crystal violet staining, and analysis of biofilm formation, swimming motility, and related virulence factor gene expression levels demonstrated that compound 4S could function as a new anti-virulence factor inhibitor by interfering with the bacterial infection process. Furthermore, the pot experiments provided convinced evidence that compound 4S had the high control efficacy (curative activity: 71.4%, protective activity: 72.6%), and could be used to effectively manage rice bacterial leaf blight in vivo. CONCLUSION: Compounds 4S is an attractive virulence factor inhibitor with potential for application in treating plant bacterial diseases by suppressing production of several virulence factors. © 2024 Society of Chemical Industry.

14.
Aging (Albany NY) ; 162024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568089

RESUMO

BACKGROUND: Studies have shown that coagulation and fibrinolysis (CFR) are correlated with Hepatocellular carcinoma (HCC) progression and prognosis. We aim to build a model based on CFR-correlated genes for risk assessment and prediction of HCC patient. METHODS: HCC samples were selected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases respectively. The Molecular Signatures Database (MSigDB) was used to select the CFR genes. RiskScore model were established by single sample gene set enrichment analysis (ssGSEA), weighted correlation network analysis (WGCNA), multivariate Cox regression analysis, LASSO regression analysis. RESULTS: PCDH17, PGF, PDE2A, FAM110D, FSCN1, FBLN5 were selected as the key genes and designed a RiskScore model. Those key genes were Differential expressions in HCC cell and patients. Overexpression PDE2A inhibited HCC cell migration and invasion. The higher the RiskScore, the lower the probability of survival. The model has high AUC values in the first, third and fifth year prediction curves, indicating that the model has strong prediction performance. The difference analysis of clinicopathological features found that a great proportion of high clinicopathological grade samples showed higher RiskScore. RiskScore were positively correlated with immune scores and TIDE scores. High levels of immune checkpoints and immunomodulators were observed in high RiskScore group. High RiskScore groups may benefit greatly from taking traditional chemotherapy drugs. CONCLUSIONS: We screened CFR related genes to design a RiskScore model, which could accurately evaluate the prognosis and survival status of HCC patients, providing certain value for optimizing the clinical treatment of cancer in the future.

15.
Gut Microbes ; 16(1): 2333413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38561312

RESUMO

Urinary tract infections (UTIs) are among the most common late-onset infections in preterm infants, characterized by nonspecific symptoms and a pathogenic spectrum that diverges from that of term infants and older children, which present unique diagnostic and therapeutic challenges. Existing data on the role of gut microbiota in UTI pathogenesis in this demographic are limited. This study aims to investigate alterations in gut microbiota and fecal calprotectin levels and their association with the development of UTIs in hospitalized preterm infants. A longitudinal case-control study was conducted involving preterm infants admitted between January 2018 and October 2020. Fecal samples were collected weekly and analyzed for microbial profiles and calprotectin levels. Propensity score matching, accounting for key perinatal factors including age and antibiotic use, was utilized to match samples from UTI-diagnosed infants to those from non-UTI counterparts. Among the 151 preterm infants studied, 53 were diagnosed with a UTI, predominantly caused by Enterobacteriaceae (79.3%) and Enterococcaceae (19.0%). Infants with UTIs showed a significantly higher abundance of these families compared to non-UTI infants, for both Gram-negative and positive pathogens, respectively. Notably, there was a significant pre-UTI increase in the abundance of pathogen-specific taxa in infants later diagnosed with UTIs, offering high predictive value for early detection. Shotgun metagenomic sequencing further confirmed the dominance of specific pathogenic species pre-UTI and revealed altered virulence factor profiles associated with Klebsiella aerogenes and Escherichia coli infections. Additionally, a decline in fecal calprotectin levels was observed preceding UTI onset, particularly in cases involving Enterobacteriaceae. The observed pathogen-specific alterations in the gut microbiota preceding UTI onset offer novel insight into the UTI pathogenesis and promising early biomarkers for UTIs in preterm infants, potentially enhancing the timely management of this common infection. However, further validation in larger cohorts is essential to confirm these findings.


Assuntos
Microbioma Gastrointestinal , Infecções Urinárias , Lactente , Criança , Humanos , Recém-Nascido , Adolescente , Estudos de Casos e Controles , Escherichia coli , Recém-Nascido Prematuro , Antibacterianos/uso terapêutico , Enterobacteriaceae , Complexo Antígeno L1 Leucocitário
16.
Science ; 384(6692): 189-193, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603485

RESUMO

Inverted (pin) perovskite solar cells (PSCs) afford improved operating stability in comparison to their nip counterparts but have lagged in power conversion efficiency (PCE). The energetic losses responsible for this PCE deficit in pin PSCs occur primarily at the interfaces between the perovskite and the charge-transport layers. Additive and surface treatments that use passivating ligands usually bind to a single active binding site: This dense packing of electrically resistive passivants perpendicular to the surface may limit the fill factor in pin PSCs. We identified ligands that bind two neighboring lead(II) ion (Pb2+) defect sites in a planar ligand orientation on the perovskite. We fabricated pin PSCs and report a certified quasi-steady state PCE of 26.15 and 24.74% for 0.05- and 1.04-square centimeter illuminated areas, respectively. The devices retain 95% of their initial PCE after 1200 hours of continuous 1 sun maximum power point operation at 65°C.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38587963

RESUMO

Despite providing high-performance solutions for computer vision tasks, the deep neural network (DNN) model has been proved to be extremely vulnerable to adversarial attacks. Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked. Besides, commonly used adaptive learning and fine-tuning technique is unsuitable for adversarial defense since it is essentially a zero-shot problem when deployed. Thus, to tackle this challenge, we propose an attack-agnostic defense method named Meta Invariance Defense (MID). Specifically, various combinations of adversarial attacks are randomly sampled from a manually constructed Attacker Pool to constitute different defense tasks against unknown attacks, in which a student encoder is supervised by multi-consistency distillation to learn the attack-invariant features via a meta principle. The proposed MID has two merits: 1) Full distillation from pixel-, feature- and prediction-level between benign and adversarial samples facilitates the discovery of attack-invariance. 2) The model simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration. Theoretical and empirical studies on numerous benchmarks such as ImageNet verify the generalizable robustness and superiority of MID under various attacks.

18.
Front Oncol ; 14: 1327834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590658

RESUMO

Atypical Chronic Myeloid Leukemia (aCML), a myeloproliferative neoplasm with poor prognosis, was reclassified as aCML by the ICC classification, and as MDS/MPN with neutrophilia by the WHO 2022 classification. Due to the heterogeneity of its clinical features and the lack of unique biomarkers, as well as limited treatment options, aCML currently lacks a standardized treatment protocol. In this case report, we reviewed a young man diagnosed with aCML who achieved complete clinical and hematologic remission subsequent to receiving a therapeutic regimen combining Venetoclax and Azacitidine.

20.
World J Clin Cases ; 12(9): 1622-1633, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38576744

RESUMO

BACKGROUND: The pathogenesis of ulcerative colitis (UC) is complex, and recent therapeutic advances remain unable to fully alleviate the condition. AIM: To inform the development of novel UC treatments, bioinformatics was used to explore the autophagy-related pathogenesis associated with the active phase of UC. METHODS: The GEO database was searched for UC-related datasets that included healthy controls who met the screening criteria. Differential analysis was conducted to obtain differentially expressed genes (DEGs). Autophagy-related targets were collected and intersected with the DEGs to identiy differentially expressed autophagy-related genes (DEARGs) associated with active UC. DEARGs were then subjected to KEGG, GO, and DisGeNET disease enrichment analyses using R software. Differential analysis of immune infiltrating cells was performed using the CiberSort algorithm. The least absolute shrinkage and selection operator algorithm and protein-protein interaction network were used to narrow down the DEARGs, and the top five targets in the Dgree ranking were designated as core targets. RESULTS: A total of 4822 DEGs were obtained, of which 58 were classified as DEARGs. SERPINA1, BAG3, HSPA5, CASP1, and CX3CL1 were identified as core targets. GO enrichment analysis revealed that DEARGs were primarily enriched in processes related to autophagy regulation and macroautophagy. KEGG enrichment analysis showed that DEARGs were predominantly associated with NOD-like receptor signaling and other signaling pathways. Disease enrichment analysis indicated that DEARGs were significantly linked to diseases such as malignant glioma and middle cerebral artery occlusion. Immune infiltration analysis demonstrated a higher presence of immune cells like activated memory CD4 T cells and follicular helper T cells in active UC patients than in healthy controls. CONCLUSION: Autophagy is closely related to the active phase of UC and the potential targets obtained from the analysis in this study may provide new insight into the treatment of active UC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...